On the Cmc Foliation of Future Ends of a Spacetime

نویسنده

  • CLAUS GERHARDT
چکیده

We consider spacetimes with compact Cauchy hypersurfaces and with Ricci tensor bounded from below on the set of timelike unit vectors, and prove that the results known for spacetimes satisfying the timelike convergence condition, namely, foliation by CMC hypersurfaces, are also valid in the present situation, if corresponding further assumptions are satisfied. In addition we show that the volume of any sequence of spacelike hypersurfaces, which run into the future singularity, decays to zero provided there exists a time function covering a future end, such that the level hypersurfaces have non-negative mean curvature and decaying volume.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Late Time Behaviour of the Maximal Slicingof

A time-symmetric Cauchy slice of the extended Schwarzschild spacetime can be evolved into a foliation of the r > 3m=2-region of the spacetime by maximal surfaces with the requirement that time runs equally fast at both spatial ends of the manifold. This paper studies the behaviour of these slices in the limit as proper time-at-innnity becomes arbitrarily large and gives an analytic expression f...

متن کامل

Existence and Non-existence Results for Global Constant Mean Curvature Foliations

If (M, g) is a Lorentz manifold and S a spacelike hypersurface, let h and k denote the induced metric and second fundamental form of S respectively. The mean curvature of S is the trace trhk. An interesting class of spacelike hypersurfaces are those whose mean curvature is constant (CMC hypersurfaces). The Lorentz manifolds of primary interest in the following are those which possess a compact ...

متن کامل

Constant mean curvature foliations in cosmological spacetimes

Foliations by constant mean curvature hypersurfaces provide a possibility of defining a preferred time coordinate in general relativity. In the following various conjectures are made about the existence of foliations of this kind in spacetimes satisfying the strong energy condition and possessing compact Cauchy hypersurfaces. Recent progress on proving these conjectures under supplementary assu...

متن کامل

Foliations by constant mean curvature tubes

Let Γ be a nondegenerate geodesic in a compact Riemannian manifold M . We prove the existence of a partial foliation of a neighbourhood of Γ by CMC surfaces which are small perturbations of the geodesic tubes about Γ. There are gaps in this foliation, which correspond to a bifurcation phenomenon. Conversely, we also prove, under certain restrictions, that the existence of a partial CMC foliatio...

متن کامل

Late Time Behaviour of the Maximal Slicing of the Schwarzschild Black Hole

A time-symmetric Cauchy slice of the extended Schwarzschild spacetime can be evolved into a foliation of the r > 3m/2-region of the spacetime by maximal surfaces with the requirement that time runs equally fast at both spatial ends of the manifold. This paper studies the behaviour of these slices in the limit as proper time-at-infinity becomes arbitrarily large and gives an analytic expression ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008